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the slower one and so there is more of the lighter
molecule (enrichment) outside the porous
cylinder (Fig. 13.5). The method is not very
efficient and has to be repeated several times
for sufficient enrichment.]. t

When gases diffuse, their rate of diffusion is
inversely proportional to square root of the
masses (see Exercise 13.12 ). Can you guess the
explanation from the above answer?

Fig. 13.5  Molecules going through a porous wall.

Example 13.7  (a)  When a molecule (or
an elastic ball) hits a ( massive) wall, it
rebounds with the same speed. When a ball
hits a massive bat held firmly, the same
thing happens. However, when the bat is
moving towards the ball, the ball rebounds
with a different speed. Does the ball move
faster or slower? (Ch.6 will refresh your
memory on elastic collisions.)

(b) When gas in a cylinder is compressed
by pushing in a piston, its temperature
rises. Guess at an explanation of this in
terms of kinetic theory using (a) above.

(c) What happens when a compressed gas
pushes a piston out and expands. What
would you observe ?
(d) Sachin Tendulkar used a heavy cricket
bat while playing. Did it help him in
anyway ?

Answer  (a)  Let the speed of the ball be u  relative
to the wicket behind the bat. If the bat is moving
towards the ball with a speed V  relative to the
wicket, then the relative speed of the ball to bat

is V + u  towards the bat. When the ball rebounds
(after hitting the massive bat) its speed,  relative
to bat,  is V + u  moving away from the bat. So
relative to the wicket the speed of the rebounding
ball is V + (V + u) = 2V + u, moving away from
the wicket. So the ball speeds up after the
collision with the bat. The rebound speed will
be less than u if the bat is not massive. For a
molecule this would imply an increase in
temperature.

You  should be able to answer (b) (c) and (d)
based on the answer to (a).
(Hint: Note the correspondence, pistonà bat,

cylinder à wicket, molecule à ball.)         t

13.5  LAW OF EQUIPARTITION OF ENERGY

The kinetic energy of a single molecule is

2 2 21 1 1
      

2 2 2t x y zmv mv mvε = + + (13.22)

For a gas in thermal equilibrium at
temperature T  the average value of energy

denoted by   < tε > is

2 2 21 1 1 3
2 2 2 2t x y z Bmv mv mv k Tε = + + = (13.23)

Since there is no preferred direction, Eq. (13.23)
implies
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2 2x Bmv k T=  ,
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2 2y Bmv k T= ,

21 1
    

2 2z Bmv k T= (13.24)

A molecule free to move in space needs three
coordinates to specify its location. If it is
constrained to move in a plane it needs two; and
if constrained to move along a line, it needs just
one coordinate to locate it. This can also be
expressed in another way. We say that it has
one degree of freedom for motion in a line, two
for motion in a plane and three for motion in
space. Motion of a body as a whole from one
point to another is called translation. Thus, a
molecule free to move in space has three
translational degrees of freedom. Each
translational degree of freedom contributes a
term that contains square of some variable of
motion, e.g., ½ mv

x
2  and similar terms in

v
y
 and v

z
. In, Eq. (13.24) we see that in thermal

equilibrium, the average of each such term is
½ k

B
T .
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Molecules of a monatomic gas like argon have
only translational degrees of freedom. But what
about a diatomic gas such as O2 or N2? A
molecule of O2 has three translational degrees
of freedom. But in addition it can also rotate
about its centre of mass. Figure 13.6 shows the
two independent axes of rotation 1 and 2, normal
to the axis joining the two oxygen atoms about
which the molecule can rotate*. The molecule
thus has two rotational degrees of freedom, each
of which contributes a term to the total energy
consisting of translational energy tε  and
rotational energy εr

.

2 2 2 2 2
1 1 2 2

1 1 1 1 1
2 2 2 2 2t r x y zmv mv mv I Iε ε ω ω+ = + + + + (13.25)

Fig. 13.6 The two independent axes of rotation of a

diatomic molecule

where ω1 and ω2  are the angular speeds about
the axes 1 and 2 and I1, I2 are the corresponding
moments of inertia. Note that each rotational
degree of freedom contributes a term to the
energy that contains square of a rotational
variable of motion.

We have assumed above that the O2 molecule
is a ‘rigid rotator’, i.e., the molecule does not
vibrate. This assumption, though found to be
true (at moderate temperatures) for O2, is not
always valid. Molecules, like CO, even at
moderate temperatures have a mode of vibration,
i.e., its atoms oscillate along the interatomic axis
like a one-dimensional oscillator, and contribute
a vibrational energy term ε

v
 to the total energy:

εv m
y

t
ky= 





+
1
2

1
2

2
2d

d

t r vε ε ε= + + ε (13.26)
where k is the force constant of the oscillator
and y the vibrational co-ordinate.

Once again the vibrational energy terms in
Eq. (13.26) contain squared terms of vibrational
variables of motion y and dy/dt .

At this point, notice an important feature in
Eq.(13.26). While each translational and
rotational degree of freedom has contributed only
one ‘squared term’ in Eq.(13.26), one vibrational
mode contributes two ‘squared terms’ : kinetic
and potential energies.

Each quadratic term occurring in the
expression for energy is a mode of absorption of
energy by the molecule. We have seen that in
thermal equilibrium at absolute temperature T,
for each translational mode of motion, the
average energy is ½ k

B
T. The most elegant

principle of classical statistical mechanics (first
proved by Maxwell) states that this is so for each
mode of energy: translational, rotational and
vibrational. That is, in equilibrium, the total
energy is equally distributed in all possible
energy modes, with each mode having an average
energy equal to  ½ k

B
T. This is known as the law

of equipartition of energy. Accordingly, each
translational and rotational degree of freedom
of a molecule contributes ½ k

B
T  to the energy,

while each vibrational frequency contributes
2 × ½ k

B
T  = k

B
T ,  since a vibrational mode has

both kinetic and potential energy modes.
The proof of the law of equipartition of energy

is beyond the scope of this book. Here, we shall
apply the law to predict the specific heats of
gases theoretically. Later, we shall also discuss
briefly, the application to specific heat  of solids.

13.6  SPECIFIC HEAT CAPACITY

13.6.1 Monatomic Gases

The molecule of a monatomic gas has only three
translational degrees of freedom. Thus, the
average energy of a molecule at temperature
T is (3/2)kBT .  The total internal energy of a mole
of such a gas is

* Rotation along the line joining the atoms has very small moment of inertia and does not come into play for

quantum mechanical reasons. See end of section 13.6.
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2 2B AU k T N RT= × = (13.27)

The molar specific heat at constant volume,
C

v
, is

 C
v
 (monatomic gas) = 

d
d
U

T
 =

3
2

RT (13.28)

For an ideal gas,
C

p
 – C

v
 = R (13.29)

where C
p
 is the molar specific heat at constant

pressure.  Thus,

C
p
 = 5

2
 R    (13.30)

The ratio of specific heats p

v

5
3

C

C
γ = =    (13.31)

13.6.2 Diatomic Gases

As explained earlier, a diatomic molecule treated
as a rigid rotator, like a dumbbell, has 5 degrees
of freedom: 3 translational and 2 rotational.
Using the law of equipartition of energy, the total
internal energy of a mole of such a gas is

5 5
2 2B AU k T N RT= × = (13.32)

The molar specific heats are then given by

C
v
 (rigid diatomic) = 

5

2
R, C

p
 = 

7

2
R (13.33)

γ (rigid diatomic) = 
7

5
(13.34)

If the diatomic molecule is not rigid but has
in addition a vibrational mode

U k T k T N  RTB B A= +
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13.6.3 Polyatomic Gases

In general a polyatomic molecule has 3
translational, 3 rotational degrees of freedom
and a certain number ( f ) of vibrational modes.
According to the law of equipartition of energy,
it is easily seen that one mole of such a gas has

U = 3

2




 k
B
T + 3

2
 k

B
T + f k

B
T   N

A

i.e.,C
v
 = (3 + f ) R,  C

p
 = (4 + f ) R,

( )
( )

f

f
γ

4 +
=

3 +
(13.36)

Note that C
p
 – C

v
 = R is true for any ideal

gas, whether mono, di or polyatomic.
Table 13.1 summarises the theoretical

predictions for specific heats of gases ignoring
any vibrational modes of motion. The values are
in good agreement with experimental values of
specific heats of several gases given in Table 13.2.
Of course, there are discrepancies between
predicted and actual values of specific heats of
several other gases (not shown in the table), such
as Cl2, C2H6 and many other polyatomic gases.
Usually, the experimental values for specific
heats of these gases are greater than the
predicted values as given in Table13.1 suggesting
that the agreement can be improved by including
vibrational modes of motion in the calculation.
The  law of equipartition of energy is, thus, well

Nature of
Gas

C
v

(J mol-1
K-1

)

C
p

(J mol-1
K-1

)

C
p
- C

v

(J mol-1
K-1

)

g

Monatomic 12.5 20.8 8.31 1.67

Diatomic 20.8 29.1 8.31 1.40

Triatomic 24.93 33.24 8.31 1.33

Table 13.1 Predicted values of specific heat
capacities of gases (ignoring

vibrational modes)

Table13.2 Measured values of specific heat
capacities of some gases
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verified experimentally at ordinary
temperatures.

Example 13.8 A cylinder of fixed capacity
44.8 litres contains helium gas at standard
temperature and pressure. What is the
amount of heat needed to raise the
temperature of the gas in the cylinder by
15.0 °C ? (R = 8.31 J mo1–1 K–1).

Answer Using the gas law PV = µRT, you can
easily show that 1 mol of any (ideal) gas at
standard temperature (273 K) and pressure
(1 atm = 1.01 × 105 Pa) occupies a volume of
22.4 litres. This universal volume is called molar
volume. Thus the cylinder in this example
contains 2 mol of helium. Further, since helium
is monatomic, its predicted (and observed) molar
specific heat at constant volume, C

v
 = (3/2) R,

and molar specific heat at constant pressure,
C

p
 = (3/2) R + R = (5/2) R .  Since the volume of

the cylinder is fixed, the heat required is
determined by C

v
. Therefore,

Heat required = no. of moles × molar specific
heat × rise in temperature

= 2 × 1.5 R × 15.0 = 45 R
= 45 × 8.31 = 374 J. t

13.6.4   Specific Heat Capacity of Solids

We can use the law of equipartition of energy to
determine specific heats of solids. Consider a
solid of N atoms, each vibrating about its mean
position. An oscillation in one dimension has
average energy of   2 × ½ k

B
T = k

B
T . In three

dimensions, the average energy is 3 k
B
T. For a

mole of solid, N = N
A
, and the total

energy is
U =  3  k

B
T  × N

A
  = 3 RT

Now at constant pressure ∆Q = ∆U + P∆V

= ∆U,  since for a solid  ∆V is negligible. Hence,

 3
Q U

C R
T T

∆ ∆
= = =

∆ ∆
(13.37)

Table 13.3 Specific Heat Capacity of some
solids at room temperature and

atmospheric pressure

As Table 13.3 shows the prediction generally
agrees with experimental values at ordinary
temperature (Carbon is an exception).

13.6.5  Specific Heat Capacity of Water

We treat water like a solid. For each atom average
energy is 3k

B
T. Water molecule has three atoms,

two hydrogen and one oxygen. So it has

U = 3 × 3 k
B
T  × N

A
  = 9 RT

and C = ∆Q/ ∆T =∆ U / ∆T  = 9R .
This is the value observed and the agreement

is very good. In the calorie, gram, degree units,
water is defined to have unit specific heat. As  1
calorie = 4.179 joules and one mole of water
is 18 grams, the heat capacity per mole is
~ 75 J mol-1 K-1 ~  9R. However with more
complex  molecules like alcohol or acetone the
arguments, based on degrees of freedom, become
more complicated.

Lastly, we should note an important aspect
of the predictions of specific heats, based on the
classical law of equipartition of energy. The
predicted specific heats are independent of
temperature. As we go to low temperatures,
however, there is a marked departure from this
prediction. Specific heats of all substances
approach zero as T à0.  This is related to the
fact that degrees of freedom get frozen and
ineffective at low temperatures. According to
classical physics, degrees of freedom must
remain unchanged at all times. The behaviour
of  specific heats at low temperatures shows the
inadequacy of classical physics and can be
explained only by invoking quantum
considerations, as was first shown by Einstein.
Quantum mechanics requires a minimum,
non-zero amount of energy before a degree of
freedom comes into play. This is also the reason
why vibrational degrees of freedom come into play
only in some cases.

13.7  MEAN FREE PATH

Molecules in a gas have rather large speeds of
the order of the speed of sound. Yet a gas leaking
from a cylinder in a kitchen takes considerable
time to diffuse to the other corners of the room.
The top of a cloud of smoke holds together for
hours. This happens because molecules in a gas
have a finite though small size, so they are bound
to undergo collisions. As a result, they cannot
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move straight unhindered; their paths keep
getting incessantly deflected.

Fig. 13.7 The volume swept by a molecule in time ∆t

in which any molecule will collide with it.

Suppose the molecules of a gas are spheres
of diameter d. Focus on a single molecule with
the average speed <v>. It will suffer collision with
any molecule that comes within a distance d
between the centres. In time ∆t, it sweeps a
volume πd2 <v> ∆t wherein any other molecule

will collide with it (see Fig. 13.7). If n is the
number of molecules per unit volume, the
molecule suffers nπd2 <v> ∆t  collisions in time
∆t. Thus the rate of collisions is  nπd2 <v> or the
time between two successive collisions is on the
average,

τ  = 1/(nπ <v> d2 ) (13.38)
The average distance between two successive

collisions, called the mean free path l, is :
l  = <v> τ = 1/(nπd2) (13.39)
In this derivation, we imagined the other

molecules to be at rest. But actually all molecules
are moving and the collision rate is determined
by the average relative velocity of the molecules.
Thus we need to replace <v> by <v

r
> in Eq.

(13.38). A more exact treatment gives

( )21/ 2l n dπ= (13.40)

Let us estimate l and τ  for air molecules with
average speeds  <v> = ( 485m/s). At STP

n = 
( )
( )

×

×

23

–3

0.02 10

22.4 10

=  2.7 × 10 25 m -3.

Taking, d = 2 × 10–10 m,
τ = 6.1 × 10–10 s
and l = 2.9 × 10–7 m ≈ 1500d (13.41)

Seeing is Believing

Can one see atoms rushing about.  Almost but not quite.  One can see pollen grains of a flower being
pushed around by molecules of water. The size of the grain is ~ 10-5 m.  In 1827, a Scottish botanist
Robert Brown, while examining, under a microscope, pollen grains of a flower suspended in water
noticed that they continuously moved about in a zigzag, random fashion.

Kinetic theory provides a simple explanation of the phenomenon. Any object suspended in water is
continuously bombarded from all sides by the water molecules. Since the motion of molecules is random,
the number of molecules hitting the object in any direction is about the same as the number hitting in
the opposite direction. The small difference between these molecular hits is negligible compared to the
total number of hits for an object of ordinary size, and we do not notice any movement of the object.

When the object is sufficiently small but still visible under a microscope, the difference in molecular
hits from different directions is not altogether negligible, i.e. the impulses and the torques given to the
suspended object through continuous bombardment by the molecules of the medium (water or some
other fluid) do not exactly sum to zero. There is a net impulse and torque in this or that direction. The
suspended object thus, moves about in a zigzag manner and tumbles about randomly.  This motion
called now ‘Brownian motion’ is a visible proof of molecular activity. In the last 50 years or so  molecules
have been seen by scanning tunneling and other special microscopes.

In 1987 Ahmed Zewail, an Egyptian scientist working in USA was able to observe not only the
molecules but also their detailed interactions. He did this by illuminating them with flashes of laser
light for very short durations, of the order of tens of femtoseconds and photographing them.  ( 1 femto-
second = 10-15 s ). One could study even the formation and breaking of chemical bonds. That is really
seeing !
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As expected, the mean free path given by
Eq. (13.40) depends inversely on the number
density and the size of the molecules. In a highly
evacuated tube n is rather small and the mean
free path can be as large as the length of the
tube.

Example 13.9 Estimate the mean free path
for a water molecule in water vapour at 373 K.
Use information from Exercises 13.1 and
Eq. (13.41) above.

Answer The d for water vapour is same as that
of air. The number density is inversely
proportional to absolute temperature.

So 25 25 –3273
2.7 10 2 10 m

373
n = × × = ×

Hence, mean free path –74 10 ml = × t

Note that the mean free path is 100 times the
interatomic distance ~ 40 Å = 4 ×10-9 m calculated
earlier. It is this large value of mean free path that
leads to the typical gaseous behaviour. Gases can
not be confined without a container.

Using, the kinetic theory of gases, the bulk
measurable properties like viscosity, heat
conductivity and diffusion can be related to the
microscopic parameters like molecular size. It
is through such relations that the molecular
sizes were first estimated.

SUMMARY

1. The ideal gas equation connecting pressure (P ), volume (V ) and absolute temperature
(T ) is

                                         PV = µ RT     = k
B
 NT

where µ is the number of moles and N is the number of molecules. R and k
B
 are universal

constants.

R = 8.314 J mol–1 K–1,     k
B
  = 

A

R

N    = 1.38 × 10–23 J K–1

Real gases satisfy the ideal gas equation only approximately, more so at low pressures
and high temperatures.

2. Kinetic theory of an ideal gas gives the relation

                                        
21

3
P   n m v=

where n is number density of molecules, m the mass of the molecule and 2v    is the

mean of squared speed. Combined with the ideal gas equation it yields a kinetic
interpretation of temperature.

21 3
2 2 B m v    k  T= ,  ( )1/2

2 rmsv v=
3 Bk T

m
=

This tells us that  the temperature of a gas is a measure of the average kinetic energy
of a molecule, independent of the nature of the gas or molecule. In a mixture of gases at
a fixed temperature the heavier molecule has the lower average speed.

3. The translational kinetic energy

E = 

2

3
 k

B 
NT.

This leads to a relation

PV = 
2

3
 E

4. The law of equipartition of energy states that if a system is in equilibrium at absolute
temperature T, the total energy is distributed equally in different energy modes of
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